UNIVERSITY OF TWENTE.

PROXIMITY EFFECT CORRECTION FOR E-BEAM FABRICATION OF ALUMINUM OXIDE WAVEGUIDES

N. CHAHIR

Who are we..

• Integrated Optical Systems (IOS) @ University of Twente (Netherlands)

UNIVERSITY OF TWENTE. 11-04-2024

MESA+ Nanolab

ized equipment

XRD, annealing

Research areas:

- Electronics •
- CVD), 3D nano shaping • n, etching,
- MEMS/NEMS •
- Fluidics ۲
- **Photonics** ۲

UNIVERSITY OF TWENTE. 11-04-2024

PHOTONIC INTEGRATION

Photonic Integration

- Energy efficiency
- Increased speed
- Reduced size and cost
- Scalability
- Novel functionalities

[1] https://www.eurekalert.org/news-releases/738849

[2] https://www.lionix-international.com/photonics/photonic-integrated-circuit-development/photonic-integrated-circuit-design/

11-04-2024 UNIVERSITY OF TWENTE.

AI2O3 AS A PHOTONIC MATERIAL

- Large transparency window: UV-mid-IR
- Low propagation losses: 5 dB/m
- Moderate refractive index: 1,72@1550 nm
- Wafer level deposition
- High rare-earth ion solubility
- In the Nanolab → RF reactive sputtering

[Review: Hendriks et. al. , Advances in Physics: X, 6 (1), 1833753 (2021)

INTEGRATED PHOTONIC PLATFORM

BROADBAND OPERATION

UNIVERSITY OF TWENTE.

Fabrication

9

Recent Demonstration

 Technology maturation of low-loss Al2O3 waveguides for UV wavelengths

 Validation in UV waveguideenhanced Raman spectroscopy (WERS) and surface ion traps for qubit generation

- Foundry service (RSDPhotonics)Market analysis
- Dissemination activities
- Detailed business plan

FILM STATUS & LOSS COMPARISON

- Layer uniformity 1-4%
- Refractive index uniformity <1%

- Slab losses of 0.4 dB/cm @ 377nm
- Lowest loss of 1.3 dB/cm for TM @ 369nm & 1.1 @ 405nm

¹¹⁻⁰⁴⁻²⁰²⁴ UNIVERSITY OF TWENTE.

1. Proximity Effect

Why a PEC?

- Different CDs in the same layout
 - tapers
 - waveguides
 - coupled lines and gaps
 - gratings
- Correction of all CDs in one exposure
- Dose depends on lines dimension and pattern density

- Exposure → Scattering → Absorbed energy → Feature
- Effective blur \rightarrow CD variation
 - Beam size
 - Scattering
 - Process

11-04-2024 UNIVERSITY OF TWENTE.

Exposure with wrong dose

600 nm lines

unstable grating lines

Calibration Process

- PSF simulation (Monte Carlo Simulation)
- Data-prep (test pattern, resist contrast)
- Exposure
- Resist development
- Pattern transfer
 - RIE etching
- Inspection
 - SEM \rightarrow find base dose

UNIVERSITY OF TWENTE.

Dose correction

2.1st PEC-Results

Test pattern + Exposure

Local pattern density variation from isolated to fully dense

• Filling factors:

• Dose range: 250 -1150 μ*C/cm*^2

Measurements

Linewidths Resist contrast curve Base Dose Negative resist thickness (nm) CD [nm] (-50 Nominal Dose [uC/cm²] Dose (µC/cm^2)

Base dose of 250 μ *C*/*cm*²

Results

3.2nd PEC-Results

Test pattern + Exposure

• Filling factors:

0%, 25%, 50%, 75%, 100%

• Dose range: 60 – 400 μ*C/cm*^2

Measurements

Resist contrast curve

Linewidths

11-04-2024 UNIVERSITY OF TWENTE.

Results

under dose

over dose

75% FF

11-04-2024 UNIVERSITY OF TWENTE.

Dose correction

PEC validation

11-04-2024 UNIVERSITY OF TWENTE.

PEC validation

UNIVERSITY OF TWENTE.

4. CONCLUSION & OUTLOOK

OUTLOOK

- Substantial feature fidelity improvement of the patterned features
- CD of 100nm single line

FUTURE WORK:

- High contrast resist/Hard mask
- Smaller CD (~ 10nm)
- Shape PEC
- ODUS technique
- Multi-Pass feature

ACKNOWLEDGEMENTS

UNIVERSITY OF TWENTE.

INSTITUTE FOR NANOTECHNOLOGY

11-04-2024 UNIVERSITY OF TWENTE.

European Innovation Council

Funded by the European Union

THANK YOU!

