

Loops, Variables & Functions
Variable handling is a key factor for effective and flexible working inside of flows and doing pattern
processing. With this note we will explore the various options inside BEAMER for variables and how they
can help in a day-to-day work environment.

Content
Loops, Variables & Functions .. 1

Places for variables ... 2

Definitions of variables ... 2

Global and Local variables .. 2

Default values ... 4

Math with a single variable ... 4

Math with multiple variables .. 6

Reading environmental variables ... 7

Functions as Inputs ... 7

Places for variables

Variables can be used in the GUI at any location that allows text input. It could be simple fields such as
the effective blur or the field size or even a path for the IMPORT module or EXPORT module.

Definitions of variables
Each variable is denoted by a unique name enclosed within '%' symbols at both the beginning and end.

For instance, %myvar% serves as an illustrative example of this naming convention.

Two predefined variables hold specific significance and are restricted for distinct purposes. These

variables are %IMPORT% and %EXPORT%. They retain the most recent path associated with the Import

module and Export module, respectively. This mechanism enables automatic tracking of paths for these

specific operations.

Beyond these predefined variables, users are granted the freedom to choose any other name for their

variables, barring a specific combination. Specifically, a combination involving a prefix followed by

%EnvVar_% is reserved for future exploration and utilization.

Global and Local variables

The concept of local and global variables is very typical in programming. BEAMER adapted this concept
to have local variables with loops and global variables for the remainder of the flow. Defining a variable
anywhere in a module sets a global variable.

Using Loops defines a frame that sets locally within the loop an environment for variables. It can access
variables that are defined globally but does not allow the same name to be re-used outside of the loop.
A local variable takes dominance over the globally defined one, meaning we have a method of
overwriting global variables with local / loop variables.

Custom Modules/Flow also fall under this restriction. They allow the usage of variables that are queried
when taking a custom module to the flow, and variables inside these custom flows will overwrite the
identically named global variable.

Adding to any module a variable that is not within a user custom flow, or a loop will create a variable
entry in the list and can be referred to as a global variable. This one can be used anywhere else, and thus
it can be a convenient method to change a value at multiple locations while changing it only once in the
lists of variables.

Default values

Working with user flows or global variables, setting a default value can be quite advantageous. A default
value implies that the variable is initially loaded with a specific value, which can later be changed either
through the variable list or by configuring user module parameters. There is no need to set a default
value for loop variables, as they are automatically reset with each iteration.

Defining a default value is a straightforward process. Simply insert a set of parentheses containing the
desired value after the variable's name but before the final '%'. This action will preload the variable with
the designated default value. It is important to note that within the BEAMER framework, all variables
are treated as strings. The processing of variable is happening at the execution of the module, so the
value of the variable is then converted into the integers, floats or strings that the input field is actually
expecting. As user you do not need to worry about this part.

As an example:

%name(20)%

In this instance, %name% is established with a default value of 20, achieved by appending (20).

Math with a single variable

Math operations on single variables are possible by including the desired formula in the field. For
instance, if I would like to set my variable in units of nm but the field expects an input of µm, one can
apply the conversion operation (division or multiplication).

Example:

%bias% / 1000

This would convert the nanometers units to µm in the input field, here the Bias XY

The parser that processes the inputs is based on C++. Therefore, a helpful link to check all available
possibilities is: C++ Math Expression Parser

Math with multiple variables

With variables, you can do strings and math operations. String creation can be a simple chain of text and
variables.

Example:

Variables would be %x% and %y% indexing a matrix position. To export the results of these as a file, the
export path would look like this:

Samplefile_posX%x%_posY%y%.gds

This results in a file list like:

Samplefile_posX0_posY0.gds, Samplefile_posX0_posY1.gds, Samplefile_posX0_posY2.gds,
Samplefile_posX1_posY0.gds,…

In case some math would be needed, the syntax is %()% wrapping the formula. Taking the same
example, let us add an offset to the posX and posY indicating a different series in the files. The offset in
the design is represented by the TRANSFORM shifting the pattern. In addition, each series is getting a
unique bias applied to the pattern.

Samplefile_posX%(%bias%+%x%)%_posY%(%bias%+%y%)%.gds

The series is now 100, 200, …

https://sourceforge.net/projects/cppmathparser/

Reading environmental variables

In some instances, getting information from the environment variables of your operating system can be
helpful. A typical use case would be to store a specific user or project name, for example, in a variable
and then append this to file names or include it to make decisions based on their values within the flow.

%EnvVar_<name>% is a fixed prefix to the variable name to access the value of that specific variable
and call it to the BEAMER environment.

For example, we could put in every file we export the project name that has been set to an
environmental variable plus the username:

%EnvVar_ProjectName%_%EnvVar_UserName%_myproject_01.gds

would return for ProjectName ‘VariableDemo’ and UserName ‘Ritter’

VariableDemo_Ritter_myproject_01.gds

Functions as Inputs

The IF and SELECT module support functions to make flow decisions based on parameters from the
incoming layout. These functions use a Python-orientated syntax to read information from layout.
Besides the syntax in the GUI, a specific Python function is also available.

The main difference is that the GUI syntax is skipping any parameters, as the present layout is the
parameter. In Python, we can use various layouts and therefore they are addressed.

GUI: get_area()

Python: BEAMER.get_area(in1)

In the IF or SELECT modules these can be compared against criteria, for example, to check if a design is
in the positive x coordinates one would use an IF module with these criteria:

get_extent_left() > 0

The flow would then branch into the right branch of the IF module in case the condition would be true,
otherwise, it would branch left.

Another example here compares Python with GUI. The goal is to grow the extent of the current pattern
by 5µm in each direction. This should be independent of the pattern coming in and therefore should
work for all layouts without the user needing to inspect the pattern extent and adjust.

GUI:

Python:

